Quaternion differentiation

Search IconIcon to open search

Parent: Quaternion index
Source: J. D. Hol — Sensor fusion and calibration of inertial sensors, vision, ultra-wideband and GPS

unknown_filename.3.png

unknown_filename.png

unknown_filename.2.png

Using the identities: unknown_filename.1.png


http://math.stackexchange.com/questions/189185/quaternion-differentiation 
Numerical differentiation (Euler)


http://math.stackexchange.com/questions/1896379/how-to-use-the-quaternion-derivative

$$ \begin{aligned} q(t+dt) &= q(t) \otimes dq\
\dfrac{dq}{dt} &= \frac{1}{2} \omega \otimes q \quad \text{with } \omega = \left[ \begin{array}{cccc} 0 & \omega_x & \omega_y & \omega_z \end{array} \right]^\text{T} \end{aligned}$$

Integrating this, assuming $\omega=\text{const.}$ from $t_0$ to $t_0 + dt$: $$ \begin{aligned} q(t) &= q(t_0) \exp \left( \frac{1}{2} \omega \cdot \left( t - t_0\right) \right)\
\rightarrow dq &= \exp \left( \frac{1}{2} \omega \cdot dt \right) \end{aligned} $$