Linearisation of an orientation in SO(3)
Parents:
Rotations / SO(3) group index
,
Quaternion index
,
orientation-parametrisations
Source:
MKok 2017
Rotation of a vector in SO(3)
- The
SO(3)
group is a
Lie group
, so there exists
- an exponential map from a corresponding Lie algebra to the SO(3) group
- a reverse logarithm map
- Possible to represent
- orientations using unit quaternions or rotation matrices in SO(3) — linearisation point
- orientation deviations $\eta_t$
- orientations using unit quaternions or rotation matrices in SO(3) — linearisation point
- I think this is a global representation