Euler angles
Parents: rotations-so3-group-index , orientation-parametrisations
Source: Phil’s Lab
- Three angles that describe the orientation of an object w.r.t. a fixed coordinate system
- Roll $\phi$, Pitch $\theta$, Yaw $\psi$
Source: http://en.wikipedia.org/wiki/Euler_angles
Possible representations
- Proper Euler angles (e.g. $zxz$) vs Tait-Bryan (e.g. $xyz$, $zyx$)
- Intrinsic vs. extrinsic rotations
- Extrinsic rotations (around fixed CS $xyz$)
- Intrinsic rotations (around body CS $XYZ = x''' y''' z'''$)
As a rotation matrix
$$R = X(\alpha) Y(\beta) Z(\gamma)$$
This means either: (s. Intrinsic vs extrinsic rotations )
- extrinsic rotations about z -> y -> x / yaw pitch roll
- intrinsic rotations about x -> y' -> z'' = Z = z'''
Note: Any extrinsic rotation is equivalent to an intrinsic rotation by the same angles but with inverted order of elemental rotations, and vice versa. [ Source ]
Intrinsic rotations $x-y’-z″$ by angles $\alpha, \beta, \gamma$ are equal to extrinsic rotations $z-y-x$ by angles $\gamma, \beta, \alpha$.
Definition of X(alp), Y(beta), Z(gamma) [elemental rotation matrix] depends on convention chosen
Table of Euler rotation matrices (RH, active, intrinsic):
Proper Euler | Tait-Bryan |
---|---|
![]() | |
![]() |
Source: Markley 2014
Table of Euler rotation matrices (RH, passive, intrinsic): 1: phi, 2:theta, 3:psi
Proper Euler | Tait-Bryan |
---|---|
![]() | |
![]() |
Euler to quaternion conversions (note: these are all passive transformations??)
1: phi, 2:theta, 3:psi