Unit quaternions

Search IconIcon to open search

Parent: Quaternion index , orientation-parametrisations
See also: quaternion-conventions , quaternion double cover

Source: Solà 2017

Properties

$$ \begin{aligned} \left\lVert \mathbf{q} \right\rVert &= 1\
\mathbf{q}^{-1} &= \mathbf{q}^* \end{aligned} $$

Can be written in the form $$ \mathbf{q} = \left[ \begin{array}{c} \cos\theta \ \mathbf{u} \sin\theta \end{array} \right] $$

with

  • $\mathbf{u}$ as a unit vector
  • $\theta$ is the angle between $\mathbf{q}$ and the identity quaternion $\mathbf{q}_I = \left[\begin{array}{cccc}1 & 0 & 0 & 0\end{array}\right]^\text{T}$