Quaternion double cover
Parent: Quaternion index
Source: Solà 2017
$$ \mathbf{q} = \left[ \begin{array}{c} q_w\ \mathbf{q}_v \end{array} \right] = \left[ \begin{array}{c} \cos\frac{\phi}{2} \ \mathbf{u} \sin\frac{\phi}{2} \end{array} \right] $$ where $\phi$ is the angle rotated by $\mathbf{q}$ on objects in the 3D space $\mathbb{R}^3$.
Recap
- $\theta$ is the angle in quaternion space (s. unit quaternions )
- $\phi$ as the angle in 3D space $\mathbb{R}^3$
Therefore, the angle is halved in quaternion space. $$\theta = \phi / 2$$