Lie group, Lie algebra

Search IconIcon to open search

Lie group

Parent: Rotations / SO(3) group index
Sourcehttp://www.seas.upenn.edu/~meam620/slides/kinematicsI.pdf

A group that is a differentiable (smooth)  manifold  is called a Lie group.

Lie algebra

Sourcehttp://en.wikipedia.org/wiki/3D_rotation_group

Lie algebra $\mathfrak{so}(3)$

  • Every Lie group has an associated Lie algebra
  • Lie algebra: linear space with same dimension as the Lie group
  • Consists of all skew-symmetric 3x3 matrices
  • Elements of the Lie algebra $\mathfrak{so}(3)$ are elements of the tangent space of the manifold SO(3)/Lie group at the identity element .

SourceForster 2017 IMU Preintegration

An Euler vector $\mathbf{\omega} = \left(x,y,z\right) \in \mathbb{R}^3$ can be represented by a skew symmetric matrix in the Lie algebra

$$ \hat{\mathbf{\omega}} = \left[\begin{array}{ccc} 0 & -z & y\
z & 0 & -x\
-y & x & 0 \end{array}\right] \in \mathfrak{so}(3) $$

lie-group-maps

Mappings: