Exponential map
Parents: Quaternion index , Rotations / SO(3) group index
Notation
Variables
$$\begin{alignedat}{3}
&\phi &&\in \mathbb{R}^3\
&\phi^\wedge &&\in \mathfrak{so}(3)\
&\mathbf{R} &&\in \text{SO}(3)\
\end{alignedat}$$
Functions
$$\begin{alignedat}{3}
\text{(skew) } \wedge &:& \mathbb{R}^3 &&\rightarrow \mathfrak{so}(3) &\
\exp &:& ~&&\mathfrak{so}(3) &\rightarrow \text{SO}(3)\
\text{Exp} &:& ~\mathbb{R}^3
&&
&\rightarrow \text{SO}(3)
\end{alignedat}$$
Thus, $$\begin{alignedat}{3} &\exp(\phi^\wedge) = \text{Exp}(\phi) = \mathbf{R} \end{alignedat}$$
Source: Forster 2017 IMU Preintegration
At the identity
Maps an element of the
Lie algebra
($\phi^\wedge \in \mathfrak{so}(3)$, a skew symmetric matrix)
to a rotation
First order approximation $$ \exp(\phi^\wedge) \approx \mathbf{I} + \phi^\wedge$$
Some properties of the exponential map
Perturbations, first order approximation
with the right Jacobian of SO(3)
$J_r(\phi) = \mathbf{I}$ for very small angles
Following the Adjoint expression
- difference between Exp and exp? — I think exp acts on the skew-sym matrix; Exp acts on the corresp. rotation vector
Source: MKok 2017
Approximations for small perturbations
$$
\begin{aligned}
\exp_q(\eta) &\approx \left( \begin{array}{c}1 \ \eta\end{array} \right)\
\exp_R(\eta) &\approx \mathbf{I}_3 + \left[ \eta \times\right]
\end{aligned}
$$
Note: in this source, $\exp_q$ and $\exp_R$ equivalent to the $\text{Exp}$ notation in other sources. So here, $\eta$ is implicitly converted either to $\left[ \eta \times\right]$ or $\eta/2$ in an intermediate step.