Active/passive or Alibi/alias transformations
Parent:
Rotations / SO(3) group index
See also:
Intrinsic vs extrinsic rotations
Sources: Wiki , bonn-3D-cs
Alibi / Active | Alias / Passive |
---|---|
![]() | ![]() |
Point $\mathcal{x}$ doesn’t change, but the coord vector representation changes to the ‘prime’ system | |
![]() | ![]() |
CS $S(x,, y)$ is fixed | CS $S(x,, y)$ is rotated |
Point $\mathcal{x}$ rotates within fixed CS | Point $\mathcal{x}$ remains stationary but is represented within a new CS |
$\mathcal{x}_1 \rightarrow \mathcal{x}_2$ | $S_1(x^\prime,y^\prime) \rightarrow S_2(x^{\prime\prime}, y^{\prime\prime})$ |
$\left( \begin{array}\cos\theta & -\sin\theta & 0\ \sin\theta & \cos\theta & 0\0 & 0 & 1\end{array} \right)$Counterclockwise rotation by theta | $\left( \begin{array}\cos\theta & \sin\theta & 0\ -\sin\theta & \cos\theta & 0\0 & 0 & 1\end{array} \right)$ |
mathematics | physics, robotics |
Source: http://rock-learning.github.io/pytransform3d/transformation_ambiguities.html To transform between one another: use the inverse
Translations
Source: bonn-3D-cs
Active
Equation | |
---|---|
![]() | ![]() |
$$\mathbf{x}_2 = {}_2 \mathbf{T}^1, \mathbf{x}_1$$
Passive
Equation | |
---|---|
![]() | ![]() |
$${}^2\mathbf{x} = {}^2 \mathbf{T}_1, {}^1\mathbf{x}$$
Relation between active and passive transformations
The passive transformation is the inverse of the active transformation!
Active $$ \mathbf{x}_2 = \mathbf{T} \cdot \mathbf{x}_1 $$
Passive $$ {}^2\mathbf{x} = \mathbf{T}^{-1} \cdot {}^1\mathbf{x} $$
Extended notation
$$
\begin{align}
{}_2 \mathbf{T}^1 &= \left( {}^2 \mathbf{T}_1 \right)^{-1}\
{}_2 \mathbf{T}^1 &= {}^1 \mathbf{T}_2
\end{align}$$