motions-in-plane
Motions in the plane
Source: bonn-3D-cs
Rotation of $\mathcal{X}$ to $\mathcal{X}^\prime$
$$
\begin{align}
\left[
\begin{array} ~x \ y \end{array}
\right]
&=
\left[
\begin{array} ~r\cos \alpha \ y\cos \alpha \end{array}
\right]\
\mathcal{X}^\prime = \mathcal{R}(\mathcal{X}) : ~
\left[
\begin{array} ~x^\prime \ y^\prime \end{array}
\right]
&=
\left[
\begin{array}
~\cos\gamma & -\sin\gamma \
\sin\gamma & \cos\gamma \end{array}
\right]
\left[
\begin{array} ~x \ y \end{array}
\right]
\end{align}
$$
Basic homogeneous transformations
Translation of $\mathbf{t}$
$$
\begin{align}
\mathbf{x}^\prime &= \mathbf{T} \mathbf{x} \
\text{with } \mathbf{T} &=
\left[
\begin{array}
\mathbf{I} & \mathbf{t}\
\mathbf{0}^\text{T} & 1
\end{array}
\right]
\end{align}
$$
Rotation around origin by $\varphi$
$$
\begin{align}
\mathbf{x}^\prime &= \mathbf{T} \mathbf{x} \
\text{with } \mathbf{T} &=
\left[
\begin{array}
\mathbf{R} & \mathbf{0}\
\mathbf{0}^\text{T} & 1
\end{array}
\right]
\left[
\begin{array}
\cos\varphi & -\sin\varphi & 0\
\sin\varphi & \cos\varphi & 0\
0 & 0 & 1
\end{array}
\right]
\end{align}
$$
Inverse homogeneous transformations
Translation
$$ \mathbf{T}^{-1}
\left[
\begin{array}
\mathbf{I} & -\mathbf{t}\
\mathbf{0}^\text{T} & 1
\end{array}
\right]
$$
Rotation
$$ \mathbf{T}^{-1}
\left[
\begin{array}
\mathbf{R}^{-1} & \mathbf{0}\
\mathbf{0}^\text{T} & 1
\end{array}
\right]
\left[
\begin{array}
\mathbf{R}^{\text{T}} & \mathbf{0}\
\mathbf{0}^\text{T} & 1
\end{array}
\right]
$$