regularisation

Search IconIcon to open search

Parent: Generalisation

Source: google-ml-course

Regularisation

  • So far: penalisation of wrong predictions [empirical risk minimisation]
    $$ \min L(x, y, \text{model})$$
  • Now: penalise model complexity [structural risk minimisation] to prevent overfitting $$ \min L(x, y, \text{model}) + \text{complexity}(\text{model})$$
  • Some metrics for model complexity
    • Function of the weights
    • Function of the total number of features with nonzero weights
  • Types

L$_1$ vs. L$_2$ regularisation

TypePenalisesDerivative
L$_2$weight$^2$$2*$ weight
L$_1$$\vert$ weight $\vert$const. $k$ indep. of weight