ml-terminology

Search IconIcon to open search

Source: google-ml-course

ML Terminology

TermSymbolDescription
Output, label$\mathbf{y}$Variable to be predicted
Features$\left\lbrace \mathbf{x}_1, \dots, \mathbf{x}_n \right\rbrace$Representation of the (input) data
Model$f: \mathbf{x} \rightarrow \mathbf{y}'$Mapping of the input to the predictions $\mathbf{y}'$
Weights$\mathbf{w}$Parameters of the model
TermDescription
TrainingProcess of determining the model parameters (weights) that will allow an accurate mapping of the input to the resulting output (prediction)
i.e. so as to minimise the loss
(empirical risk minimisation)
InferenceApplying the already trained model to a set of inputs without known labels
RegressionPrediction of continuous values
s. simple regression model
ClassificationPrediction of discrete values (classes)
LossDifference between prediction and actual output
Penalty for a bad prediction
HyperparametersConfiguration settings for tuning how the model is trained