Event
Parent:
probability-theory
See also:
random-variable
Event $E$
Source: Wiki
$$E = \left{ \omega_i \right} \subseteq \Omega$$
- Group of outcomes
- Every event $E$ is assigned a probability of it happening
- Example event: $E = \left{ \omega \in \Omega \mid X(\omega) \leq x \right}$
“Set of all outcomes $\omega$ which satisfy the condition $X(\omega) \leq x$” $$P(E) = P(X \leq x) = p_E$$
Example
Experiment: flip a coin twice $$\Omega = \left{ (H, H), (H, T), (T, H), (T, T) \right}$$
Event $E_1$: $H$ occurs in either flip $$E_1 = \left\lbrace (H, H), (H, T), (T, H) \right\rbrace \subset \Omega$$
Event $E_2$: same result twice $$E_2 = \left{ (H, H), (T, T) \right} \subset \Omega$$
Relationships between events
Source: blitzstein-hwang
Notation | Description |
---|---|
$A \subseteq B$ | $A$ implies $B$ |
$A~\cap~B=\emptyset$ | mutually exclusive |
$\bigcup_i^n A_i = \Omega,~A_i~\cap~A_j=\emptyset$ for $i \neq j$ | partitions of $\Omega$ |
$(A~\cap~B^c) \cup (A^c~\cap~B)$ | $A$ or $B$ but not both |