bonn-3D-cs

Search IconIcon to open search

Source: https://www.youtube.com/playlist?list=PLyWhIjKEKFn9pb7tVFmZObpp2KhReb5wP

Author: Wolfgang Förstner

Motivation

  • Integrating measurements from different viewpoints
  • Observation of moving objects

Notation

NotationDescription
$\mathcal{R}$rotation transformation
$\mathbf{R}$rotation matrix
$\mathcal{X} = \mathcal{X}(x, y) = \mathcal{X}(\mathbf{x})$2D point given by the coordinates ($x, y$)
$\mathbf{x}$coordinate vector
$\mathbf{x}_2$coordinate vector with id 2
${}^2 \mathbf{x}$coordinate vector in coordinate system 2
${}_2 \mathbf{T}^1$active transformation that transforms point 1 to point 2
${}^w \mathbf{T}_b$passive transformation that transforms the point representation in CS $b$ to CS $w$

Selected Contents

  1. Motions in the plane
  2. Active vs. passive transformations
  3. Global vs. local transformations