Prediction model
Source: SLAM for Dummies
Used in the prediction step .
How to compute an expected position of the robot given the old position and the control input (so basically based on odometry .
Control terms are $\Delta x, \Delta y, \Delta \theta$
$$
\begin{align}
f &= \left[
\begin{array}{c}
x + \Delta t \cos \theta + q \Delta t \cos \theta \
y + \Delta t \sin \theta + q \Delta t \sin \theta \
\theta + \Delta \theta + q \Delta\theta
\end{array}
\right]\
&= \left[
\begin{array}{c}
x + \Delta x + q \Delta x \
y + \Delta y + q \Delta y \
\theta + \Delta \theta + q \Delta\theta
\end{array}
\right]
\end{align}
$$
Variable | Description |
---|---|
$\Delta t$ | change in thrust |
$q$ | error term |
Jacobian (assuming linearised version)
$$
\left[
\begin{array}{ccc}
1 & 0 & -\Delta t \sin\theta\
0 & 1 & \Delta\cos\theta\
0 & 0 & 1
\end{array}
\right]
$$
Not extended for landmarks because only used for robot position prediction